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Studies on Melt Spinning. IV. On the 
Stability of Melt Spinning 
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Synopsis 
The stability of melt spinning has been studied theoretically by solving for transients 

the perturbed form of the simultaneous partial differential equations of melt spinning 
introduced by the author in a previous study. Computed stability limits summarized 
in the form of maps in the (t*--St) plane with the cooling air speed serving as the third 
parameter showed that the thread must be in a molten state a t  the take-up before an 
instability can develop and that the cooling of the thread by air plays a predominant 
role in stabilizing the melt spinning. Here, t* is air temperature and St is the Stanton 
number. Draw resonances were observed experimentally in a water-quenched melt 
spinning of PET fiber and in the casting of PP film. Experimental results agreed well 
with theoretical simulations with respect to oscillation periods and stability. Draw 
resonance observed by Bergonzoni et al. was closely simulated by means of the present 
theories. 

INTRODUCTION 

Instabilities never develop in conventional air-quenched melt spinning of 
PET, PP, or nylon fibers. It does not follow, however, that melt spinning 
is always stable. It does become unstable under certain special spinning 
conditions resulting in clearly periodic and very large variations in the 
thickness of thread taken up. This phenomenon has been called the draw 
resonance ever since Miller' used the term. It just happens that conven- 
tional melt spinning is always carried out under stable operating conditions. 

The author2B3 previously developed simultaneous partial differential equa- 
tions which simulate the dynamics of melt spinning and subsequently used 
the equations in simulating the draw resonance encountered in the casting 

Thereafter, Shah and Pearson5n6 studied extensively the stability of melt 
spinning starting from partial differential equations essentially identical to 
the author's and developed stability criteria for Newtonian liquids under 
isothermal, and nonisothermal spinning' conditions. Their studies's8 have 
been extended to include power law fluids and the effects of surface ten- 
sion, inertia, etc. However, experiments are lacking in their research and 
the significance of cooling on the stability of melt spinning has not been 
discussed in detail. 
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In  the present study, the simultaneous partial differential equations of 
melt spinning are first expanded into perturbation equations around the 
steady-state solutions, the perturbation equations are solved for transients 
under many different parameter values, and the derived stability limits 
are summarized in the form of maps in the (t* - St) plane for the purpose 
of discussing in detail the effects of cooling on the spinning stability, where 
t* is the air temperature and St is the Stanton number which is a measure 
of spinning flow rate. 

A semianalytical solution of the perturbation equations is sought for the 
case of isothermal spinning to  enable the prediction of oscillation period 
from a given spinning condition. 

Theoretical findings are then compared with experimentally observed 
draw resonance in a water-quenched melt spinning of PET and in the cast- 
ing of PP film which is a two-dimensional melt spinning. Draw resonance 
in the extrusion of thick PP ribbons observed by Bergonzoni et al.9 is also 
simulated by means of the above solution for the isothermal spinning. 

SIMULTANEOUS PARTIAL DIFFERENTIAL EQUATIONS OF MELT 
SPINNING AND THEIR PERTURBATION EQUATIONS 

The author introduced in a previous study a set of simultaneous partial 
differential equations (1) through (3). Equations (4) and (5) are expres- 
sions respectively for the coefficient of heat transfer at the thread surface 
and the Trouton viscosity /3 of the polymer: 

av F 
ax AD 

aA aA av 
ar ax a x  

_ - _  - 

- - + v - = - - A -  

at z1/;;h(t* - t )  - at 
- + v  - 
aT a x  PC,A 

(3) 

where v,  A ,  and t respectively are velocity, cross-sectional area, and tem- 
perature of the thread at time T and distance x from the spinneret; p, C,, 
and E are respectively density, specific heat, and activation energy of 
polymer; and v, is the cooling air speed in the horizontal direction. Thread 
tension F is assumed independent of x and is determined to satisfy the 
boundary condition a t  the take-up. The second term on the right-hand side 
of eq. (5) takes into account the complete solidification of polymer at a 
certain temperature, which in this case is 60°C (see Fig. 1). 

Major simplifying assumptions made in introducing eqs. (1) through (5) 
are (i) round thread cross section; (ii) flat velocity and temperature pro- 
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Fig. 1.  Diagram of melt spinning. 

files across the thread; (iii) Newtonian viscosity; and (iv) negligibility of 
air drag force, gravity force, and surface tension. Steady-state solutions of 
eqs. (1) through (3) are hereafter designated by using subscript 0 and are 
simply called steady-state solutions. 

The author3 has linearized eqs. (1) through (3) by considering the per- 
turbation about the steady-state solutions : 

& 
dZ 

0 = - - - f1s - flA + f i t  + f1P (6) 

where 

a1 - = - ?! + f4a + f3A + f 6 t  - f&/ 
br 3.2 
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Coefficients f1 through f6 are functions of z and are given in the previous 
paper, except that 

It can be shown that f1 through f6 are completely fixed whenever the 

It should be noted that under a steady stake, eq. (2) can be readily in- 
values of steady-state solutions V O ( Z ) ,  Ao(z), and to(z) are fixed. 

tegrated to give 

Go = PAOVO (16) 
where Go is the steady-state mass flow rate. 

In  solving the perturbation equations (6) through (8) for transients, the 
following boundary conditions are used: (i) 8 = A = 1 = 0 a t  the spinneret 
(z = 0) ; (ii) fl = A = 1 = 0 a t  time zero (T = 0) ; and (iii) stepwise change 
in take-up speed: 

em = u(r)  = unit step function (17) 

where subscript w signifies a value a t  the take-up point. 

are simply called transient solutions. 
Hereafter, transient solutions of perturbation equations (6) through (8) 

NUMERICAL SOLUTION OF PERTURBATION EQUATIONS 

After testing three different numerical schemes, a simple backward dif- 
ference along the characteristic curves of the perturbation equations was 
selected for the numerical solution, for i t  gave the most smooth solution 
free of irregular spikes. 

When integers i and j denote respectively the ith increment in variable z 
and the j t h  increment in time 7 ,  the perturbation equations are converted 
into difference equations (18) through (20) under the above backward dif- 
ference scheme : 
AAt+i,j+i = [(l + FI - F6 - FiFs - FzF4)Di - FzDz (F6 - 1 ) 0 3 ] /  

(DETERM) (18) 

1i+1,j+1 = [(F3 + F1F3 - FIF4)DI + DZ + (F4 - F3)D31/(DETERM) 

fli+~,j+~ = [(FZF~ - FI + FIF~)DI + FzDz + (1 - Fs)Ds]/(DETERM) 

(19) 

(20) 

where 
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and FI through F6 are equal to fi through f6 multiplied by a constant dif- 
ference increment Az = AT. 

Referring to Figure 2, computation of transient solutions proceed in the 
following manner: 

1. P = 0, or thread tension equal to steady state value, is assumed; 
2. Starting on j = 2, computation proceeds upward along the j = 1 line 

step by step using eqs. (18) through (20) until the take-up point i = iw is 
reached. This gives a tentative take-up speed iiwl which does not satisfy 
the boundary condition (17). 

3. Step 2) above is repeated assuming a unity tension change P = 1 
giving another tentative take-up speed iiW2 which also does not satisfy eq. 

4. The values of P which make the boundary condition (17) satisfied 
(17). 

is given by the formula 

P = (1 - i iwl ) / ( z7w2 - VWl). (25) 

5. Step 2) is repeated using the P value given by (25) above. 
6. Steps 1) through 5) are repeated for a desired number of times in time 

direction. 
A computer program “MS3” having 355 FORTRAN statements was de- 

veloped to carry out the above computation of transient solution in addi- 
tion to the computation of steady-state solutions. It takes about 2 min 
on IBM 370/155 to compute the steady-state and transient solutions for 
one spinning condition. 

Shown in Figures 3, 4, and 5 are steady-state thread thickness Ao(z), 
steady-state thread temperature to(z), and corresponding transient solu- 
tions for different air temperatures. It can be seen in Figure 5 that a high 
air temperature tends to make melt spinning unstable. 

Ke up 

+ Time 
Fig. 2. Sequence of computation in the numerical solution of perturbation equations. 
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v*r = 500-7A.l 211 'so,/,,c 

/ P 5 ,  , , , , , , , , , , , 
0 50 100 

I (cm) 
Fig. 3. Examples of steady state solution. Thread cross-sectional area AO vs. distance x. 

0 5 0  100 

(cm) 
Fig. 4. Examples of steady-state solution. Thread temperature to vs. distance 2. 

Spinning conditions are same as in Fig. 3. 

Analytical Solution of Perturbation Equations for the Isothermal Spinning 
The steady-state solutions of eqs. (1) through (3) for the isothermal 

spinning are 

vo = vooeaz (26) 
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Fig. 5. Examples of transient solution. Spinning conditions are same as in Fig. 3. 

A .  = (27) 

1 vw a! = -log - 
x w  voo 

where subscripts 00 and w denote respectively the values a t  the spinneret 
and a t  the take-up point. In  isothermal spinning, steady-state solutions 
are straight lines on semilog graph paper. 

Perturbation equations (6) through (8) now become 

& 
dz 
- = f1(-A - 8 + 9) 

- - z  
vooa 

Equation (29) through (31) above can be integrated to give 

bA f$(z - r )  - -  - 
bz 1 

- - 2  
VOOff 

where f$ is an arbitrary function. If #J is equal to a unit step function, 

f$(Z - 7 )  = U(Z  - 7 )  (33) 

a solution is obtained which represents the transient response of the iso- 
thermal spinning to a stepwise change in tension: 

9 = - U ( 7 )  (34) 
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A = -log (1 - r ] )  ( r ]  < 1 - e - l )  (35) 

= E  (7 2 1 - eWE) (36) 

(9 2 1 - e - 0  (38) = - 5  

where q and E are dimensionless variables defined as follows: 

(40) 
VW 

voo 
E = -log (1 - vOQa.2,) = log - = a&. 

Figure 6 shows the A and values as'given in eqs. (35) through (38). The 
curve 

(41) n = 1 - e-E 

in Figure 6 is the time measured in terms of r]  the polymer takes to flow 
down from the spinneret to the point 5. 

Since A and 8 given in eqs. (35) through (38) above are the response of 
thread thickness and thread velocity to a stepwise change in thread ten- 

Fig. 6. Transient solution for a stepwise decrease in spinning tension. 
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sion, the response of thread thickness A to  a unit step increase in thread 
velocity can be expressed as 

A, = L-1 [--I L [ A ]  1 
L(s) s 

where L [ ] and L-' [ ] are respectively Laplace transform operator and in- 
verse Laplace transform operator, and A and e on the right-hand side of the 
equation are those given in eqs. (35) through (38). A, on the left-hand 
side of eq. (42) has a subscript w attached to it since the variable ( can be 
interpreted to be the logarithm of the draw-down ratio between the spin- 
neret and the take-up point. Above 2, is the desired transient solution 
that satisfies the boundary condition (17). 

The vector loci of the denominator L[O]s in eq. (42) can be constructed 
by hand calculation and are shown in Figure 7. Values of angular fre- 
quency w are marked on the vector loci; w is given by the formula 

s = j w  (43) 

where j is 4 - 1 .  Figure 7 shows that when ( becomes more than 3.0, 
vector loci start to  encircle the origin. This in turn makes the transient 
solution A, given in eq. (42) contain an oscillation term growing exponen- 
tially with time, rendering the solution unstable. t > 3.0 is equivalent to 

2/1. = draw-down ratio = eE > e3.0 = 20. (44) 
VW 

It follows, therefore, that an isotherma1 spinning is unstable when the 
draw-down ratio is more than 20. This fact was found independently by 
the author4 and by Gelder.l0 

The value of w a t  the intersection of the vector loci and the real axis is 
called the critical angular frequency wc and is approximately equal to the 

Fig. 7. Vector loci of L[fl]s. 
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angular frequency of draw resonance. w c  is a function of E ,  and so is the 
dimensionless oscillation period vc as shown in Figure 8: 

2T 
l?c = -. 

WC 
(45) 

The oscillation period of draw resonance, when expressed in the length of 
thread taken up, is then 

vwvc - vw xw - x c = -  -vc-' 
vooff voo vw 

VW 
log - 

The xc is a function only of draw-down ratio vw/voo and air gap xw. 

STABILITY LIMITS 

Parameters which affect the transient solution are coefficients f~ through 
fc in eqs. (6) through (S) and zw,  the value of z a t  the take-up point. All 
these values become fixed when the steady-state solution vo, Ao, and t o  are 
fixed. It follows then that the parameters affecting the stability are identi- 
cal to the parameters that affect the steady-state solution. 

A dimensional analysis on the steady-state version (a/& = 0) of eqs. 
(1) through (3) reveals that these parameters can be grouped into the four 
dimensionless groups below : 

= measure of temperature dependence of viscosity (47) 
w o o  - t * )  
(273 + t * ) 2  

Fig. 8. Dimensionless oscillation period qc vs. log of draw-down ratio. 
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t' 
(-0 
PO0 - 

100 - 

(49) vvo 

VW 
# = - = dimensionless cooling air speed 

1* = 100 

te, = a70 
hW= 1/26Y 

Shah and %arson (?=O) 

. (qJ= 0) E = 3500 
A (? = q.rs) 

Un E t  * b I c 

(50) 
VW 

%l 

l/Xw = - = drawn-downratio. 

By computing transient solutions under many different values in the 
above four dimensionless groups, and by classifying the solutions with re- 
spect to convergence with time, the stability limits can be obtained as closed 
surface in a four-dimensional space. Since, however, it takes too much 
computation time, draw-down ratio l / X w ,  activation energy El and spin- 
neret temperature too were given fixed values and the stability limits were 
expressed as curves on the (t* - St) plane for two different values of #; 
t* was used instead of E(tw - t * ) / ( t *  + 273)2 for the convenience in visual- 
izing and interpreting the role of cooling played in the stability of melt 
spinning. 

The stability limits derived in this manner for spinning conditions I 
(Table I) are shown in Figure 9. 

The dots and triangles marked on Figure 9 are the t* - St combinations 
for which steady-state and transient solutions were computed, using pro- 
gram MS3, to draw the stability limits. The lowermost curve in Figure 9 

TABLE I 
Spinning Conditions I 

E 
too 
1 /A, 
9 

3500 deg (for PP) 
27OOC 
264 
0 and 9.15 
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shows the boundary of the region in which the thread solidifies before it 
reaches the take-up point. 

Shah and Pearson6 have given the stability limits for Newtonian liquids 
as 

S = KSte-st (51) 

S = 0.6 for 1/X,  = 264. (52) 

where S is a function of draw-down ratio 1/X, and is 

Coefficient E above can approximately be expressed in terms of El t* ,  and 
too by the relation 

L = 5.55 X 10-'E(& - t*).  (53) 

Equation (51) through (53) and spinning conditions I combine to  give 

1.8 x 105sest est 
= 270 - 31.3 - 

ESt S t  
t * = j & -  (54) 

Equation (54) above is plotted in Figure 9 as the dotted curve which corre- 
sponds to  the author's curve for # = 0. 

Figures 10 and 11 are steady-state solutions corresponding to  points 1 
through 4 in Figure 9. The following are discussions of Figures 9 through 
11. 

x ( c w  
Fig. 10. Steady-state thread cross-sectional area vs. distance. Numbers 1 to 4 corre- 

spond to those in Fig. 9. 
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-"- I \  \a:;:; St=. 1 . 1  

I I 

O 5 b  I 00  
X (cm) 

Fig. 11. Steady-state thread temperature vs. distance 2. Numbers 1 to 4 correspond 
to those in Fig. 9. 

1 .  The thread must be in a molten state a t  the take-up point before melt 
spinning can become unstable, since in Figure 9 the stable region com- 
pletely contains the region in which the thread solidifies prior to take-up. 
Experimentally, a molten thread can not be taken up on a roll. Therefore, 
means for a quick quench such as water bath or chill roll must be provided 
between the spinneret and the take-up roll before draw resonance can start. 
Such a quick quench not accompanying drawn-down is irrelevant to the 
dynamics of melt spinning and may be considered to take the place of take- 
up point. 

2. Conventional industrial melt spinning is always stable because 
threads solidify in air prior to take-up. 

3. As the air temperature t* rises, eventually the melt spinning becomes 
unstable. 

4. Horizontal cooling air speed v, (or $) shifts the stability limits toward 
lower St values. As a result, the cooling air speed has a stabilizing effect 
in the low St region and a destabilizing effect in the high St region. 

5. The stability limits for $ = 0 agrees well with the stability criterion 
given by Shah and Pearson, except in the region bounded by St > 3 and 
t* < 60. This region corresponds to  very slow spinning in cool air. Since 
such spinning naturally is stable, the author's curve is valid. The dis- 
crepancy comes from the fact that the complete solidification of the thread 
a t  low temperatures has not been taken into consideration by Shah and 
Pearson. 

6. Steady-state solutions 1,  2, and 3 in Figures 10 and 11 are those of 
unstable spinning. The three solutions have one thing in common which 
the stable solution 4 does not have. That is to  say, the former three solu- 
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tions are close to those of isothermal spinning either over the entire length 
of spinning way or over most of the spinning way except the neighborhood 
of the spinneret. Since an isothermal spinning under the present draw- 
down ratio of 264 is unstable as discussed before, it may be concluded that 
melt spinning becomes unstable when i t  approaches the state of isothermal 
spinning. 

7. In  the medium St range, the stability limits extend into high air 
temperatures. This is estimated to be due to the fact that the balance 
struck between cooling and spinning flow rate make the shape of steady- 
state solutions differ from that of an isothermal spinning. 

8. In  summary, the cooling of the thread in the air gap plays a pre- 
dominant role in the stability of melt spinning as far as Newtonian liquids 
are concerned. 

SIMULATION OF EXPERIMENTS 

Water-quenched Melt Spinning of PET 

A water-quenched melt spinning of PET was carried out. The spinning 
had the geometry shown in Figure 12. The thread was quenched almost 
instantly in a water bath placed 2 cm below the spinneret. Spinning con- 
ditions are shown in Table 11. The last three values in Table I1 are com- 
puted using eqs. (48) through (50). 

The water-quenched melt spinning spontaneously developed a clear-cut 
draw resonance, as shown in Figure 12. The maximum thickness reached 
as much as four times the minimum. Period of oscillation was 71.2 cm in 
terms of the length of thread taken up. 

Thereafter, a cooling air current 60 cm/sec in speed was blown through 
the 2-cm air gap using a small blower. This surpressed the draw resonance 
bringing the spinning back to  stability as the dotted curve in Figure 12 

0 so I00 I S 0  ZOO 250 300 350 $00 

L e m l t h  (c.n> 

Fig. 12. Draw resonance encountered in a water-quenched melt spinning of PET. 
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shows. In  what follows, the above two experiments are simulated by means 
of the theoretical model developed in the preceding sections. 

Coefficient h H p O  of heat transfer to water was derived using a handbook 
formula assuming that the thread diameter and the thread velocity were 
equal to those at the take-up, on the grounds that litt>le draw-down of the 
thread was expected in the water bath. The hHIO value was found to be 3.12 
cal/(cm2 sec deg), being 176 times the corresponding value of h for heat 
transfer to air. Using parameter values in spinning conditions I1 and the 
above h H z O  value, steady-state and transient solutions were computed by 
means of program MS3 as shown in Figure 13, 14, and 15. The solid curves 

TABLE I1 
Spinning Conditions I1 

Spinneret orifice diameter 0 . 3  mm 
Average take up denier 11.3 
Spinneret temperature t ,  284°C 
Take-up speed v,., 300 m/min 
Horizontal cooling air speed vyo 
Air temperature t* 30°C 
Water temperature 30°C 
Specific gravity of polymer p 

Specific heat of polymer C,  
Activation energy of polymer E 
St  0.073 * 0 and 9.15 
1/x, 76.2 

0 and 60 cm/sec 

1.33 g/cm3 
0.40 cal/(g deg) 
3240 deg 

0 a5 1.0 1.5 2.0 15 
1 ( C W )  

Fig. 13. Simulation of experiments. Steady-state solutions in thread cross-sectional 
area. 
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0 I 2 

x t cm)  

Fig. 14. Simulation of experiments. Steady-state solutions in thread temperature. 

-9  
Fig. 15. Simulation of experiments. Transient solutions corresponding to Fig. 12. 

are for # = 0 and the dotted curves are for # = 9.15. Figure 13 attest to 
the assumption that little draw-down of thread takes place in water bath. 

The solid curve in Figure 15, a growing oscillation, is the simulation of 
the experimentally observed draw resonance shown as solid lines in r ' g  ' 1  ure 
12. The simulation is in agreement with experiment in that both are 
oscillatory and unstable. The experimental curve, however, is a standing 
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oscillation due to  the nonlinearity of the physical system which is lost in 
moving from eqs. (1) through (3) to the perturbation equations. 

The simulation in Figure 15 has an oscillation period of 80 in j .  Since j 
= 50 is programmed to correspond to  the time z, the thread takes to  flow 
down from the spinneret to  the take-up point which in this case mathe- 
matically coincides with the water surface, the oscillation period when 
converted into the length L, of the thread taken up computes as 

L, = - z,v, = 1.6 X 0.0709 X 300 X (100/60) = 56.9 cm 
80 
50 

(z, is 0.0709 sec). (55)  

The simulated oscillation period (55)  is 20% less than the experimental 
value of 71.2 cm. Considering that the perturbation equations are meant 
for small deviations from the steady-state values and cannot fully cope 
with the fourfold thickness variation in Figure 12, the 20% discrepancy may 
be considered small enough. 

The stabilizing effect of the cooling air found experimentally as shown 
in Figure 12 is also reflected in the theoretical curves in Figure 15 in that 
the curve for + = 9.15 is nearly stable while the curve for 9 = 0 is clearly 
unstable. 

The theoretical stability limits drawn on the (t* - St) plane in Figure 16 
are compatible with spinning conditions 11. Here again, the stabilizing 
effect of the cooling air is clearly demonstrated. Spinning conditions 11, 
shown as a dot in Figure 16, are in the unstable region when + is 0, but 
they become enclosed in the stable region when +becomes 9.15. 

The Casting of PP Film 

The casting of plastic film is a kind of melt spinning having a two- 
The melt is extruded dimensional flow pattern as shown in Figure 17. 

s t..= z s 4  ‘C 
E =  3140 d e  “I 

0.01 i 0.03 
30 0.1 0.3 1.0 3 

r 
10 

st 
Fig. 16. Stability limits compatible with spinning conditions I1 showing the stabilizing 

effect of cooling air. 
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through the die, is drawn thin while running down the air gap, adheres to  a 
chill roll while still in a molten state and is quickly quenched to solidifica- 
tion. 

Draw resonances such as the ones shown in Figure 18 are often en- 
countered in the casting of PP films. As discussed before in relation to the 
stability limits, this is due to the comparatively poor cooling of the film in 
the air gap. 

Equation (1) through (3) of melt spinning are applicable to  the casting 
of plastic film except that changes must be made on the right-hand side of 
eq. (3) as shown below, on account of the difference in geometry: 

at bt 2h*(t* - t )  - - + v - =  
b7 bX PCA 

where the variable A is the film thickness (cm) rather than the cross- 
sectional area, and the Trouton viscosity @ is twice the value of shear vis- 
cosity p rather than three times p in fiber spinning. It is fairly difficult to  
make use of eq. (56) since the complex geometry and the presence of an 

Fig. 17. Diagram of film casting and the measurement of film speed. 

Fig. 18. Draw resonance encountered in the casting of unoriented PP film. Film thick- 
ness in machine direction measured by means of an electric capacitance-type micrometer. 
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“air knife” make i t  difficult to express the coefficient h* of heat transfer in 
terms of operating conditions. 

Fortunately, the casting of unoriented PP film was found to  be close 
enough to  the isothermal spinning so that the analytical solution for the 
isothermal spinning can be used to predict the oscillation period. To check 
on the closeness, the steady-state thickness, and temperature of the film 
were measured experimentally. An industrial film-casting machine was 
run under the conditions shown in Table I11 throughout the experiments 
unless specified otherwise. 

Instead of directly measuring the film thickness, movement of paint 
specks marked on the film was measured by taking 16-mm movie pictures of 
the film as shown in Figure 17. Shown in Figure 19 are two displacement- 
versus-time curves read off the movie pictures. Graphic diff 3rentiation of 
the displacement curves gives film surface speed from which film thickness 
A(z )  can be derived as functions of distance z from the die. Film tempera- 
ture t(z)  was measured by means of a zero balance-type contact thermo- 
couple essentially identical to the one used on threads. Figure 20 shows 
A (z) curves measured under two different throughputs. While the mea- 

TABLE I11 
Film-Casting Conditions 

Effective die opening Aoo 
Film thickness A ,  
Take-up speed vu, 
Draw-down ratio 1/X, 
Air gap zw 

1000 /A 

30 P 
30 m/min 
33 
50 mm 

Extruder motor speed 850 rpm 

Fig. 19. Example of paint speck displacement. 
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1 chtll roll contact 
I I 

sured t ( x )  curve in Figure 21 shows a considerable cooling of the film in the 
air gap, the thickness curves in Figure 20 are approximately straight lines 
on the semilog graph paper exhibiting the trait of isothermal spinning. 
On account of this finding, an attempt was made to  simulate the PP film 
casting by means of the analytical solution for the isothermal spinning dis- 
cussed before. 

Since the film-casting conditions were close to  the stability limits, a 
sudden start of air knife always caused a damped oscillation in film thick- 
ness as the one shown in Figure 22, even when the casting was stable. 

Oscillation periods were measured in this manner under different values 
of (i) take-up speed v,, (ii) die exit speed VOO, and (iii) air gap x, and shown 
as dots in Figures 23 through 25. The solid curves drawn on the same fig- 
ures are the theoretical oscillation periods given by eq. (46). The theo- 
retical values agreed very well with experimental values. 

However, the theoretical simulation failed to agree with experiments in 
the stability as the transients in Figure 22 show. This is to  be expected 

x (cmi 

Fig. 20. Film thickness vs. distance from die derived from paint speck displacement 
curves. 
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Fig. 22. Film thickness after a sudden stop of air knife, both experimental and 
theoretical. 

because isothermal spinning is known to be unstable under the present 
draw-down ratio of 33 which is more than the critical value of 20. Evi- 
dently, eq. (56) must be taken into consideration before the stability limits 
can be accurately predicted. 

Nevertheless, the very good agreement obtained on the oscillation periods 
is evidence enough for the basic validity of simulating the draw resonance 
in film casting by means of the present theoretical model. 

Water-Quenched Extrusion of PP Ribbons 
observed the draw resonance encountered in the 

water-quenched extrusion of thick PP ribbons approximately 1 mm X 5 
mm in cross section a t  the take-up. Figures 26 through 29 are reproduced 
from their report. Figure 26 shows the equipments used in their experi- 
ments; the air gap was 6 in. and 12 in. 

Although no data are available on the take-up speed or mass through- 
put Go, i t  is still possible to  roughly estimate the St value in their experi- 
ments. Assuming a likely take-up speed of v, = 60 m/min and a draw- 
down ratio of l/& = 20, variables on the right-hand side of eq. (48) have 
the following values : 

Bergonzoni et 

p = 0.83 g/cm3 C, = 0.7 cal/(g deg) for PP 
Go = 4.2 g/sec Am = 0.1 cm X 0.5 cm X 20 = 1 cm2 

x, = 12 in. = 30.5 cm. (57) 

(58) 

Substituting these values into eq. (48), the St value computes as 
st = 1.9 x 10-3. 

This St value is one order of magnitude smaller than in the water-quenched 
melt spinning of PET discussed before. Since a small St means less cooling 
in the air gap, it can safely be assumed that the ribbon extrusion by Ber- 
gonzoni e t  al. was for practical purposes an isothermal spinning. Theories 
on isothermal spinning should, therefore, be applicable here. 
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Fig. 23. Oscillation period vs. take-up speed, both theoretical and experimental (air gap 
= 12.5 cm, A, = 30 p at uw = 30 m/min). 

21% 400 600 800 ILWO IZ(w I400 
Extruder mtor speed(rprR) 

Fig. 24. Oscillation period vs. extruder motor speed, both theoretical and experimental 
(air gap = 12.5 cm, vw = 30 m/min). 
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'Fig. 25. Oscillation period vs. air gap, both theoretical and-experimental (v, = 30 
m/min, extruder motor speed = 850 rpm). 
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Fig. 26. Diagram of PP ribbon extrusion. 

Shown in Figures 27 and 28 are the intensities of draw resonance ex- 
pressed in terms of the ratio of maximum ribbon width over the minimum 
plotted with respect to the draw down ratio l /hm.  Evidently, draw reso- 
nance started in the neighborhood of 1/h, = 20, verifying the author's 
statement made in eq. (44). 

Shown in Figure 29 is an example of draw resonance having an oscilla- 
tion period of 92 in. in ribbon length. Referring to Figure 27, we know the 
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I------ WLWROPREYE 1R 
MELT TEMPLRATURE m 4H.F. 
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Draw down r a t i o  
Fig. 27. Intensity of draw resonance vs. draw-down ratio under two different air gaps. 
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Fig. 28. Intensity of draw resonance vs. draw-down ratio for different polymers. 
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Fig. 29. Example of draw resonance in the extrusion of PP ribbon. 

draw-down ratio l/& was 20, and as written in Figure 29, air gap xw was 
12 in. in this experiment. By substituting these l / X w  and xw values into 
eqs. (40) and (46) and by referring to Figure 8, the theoretically predicted 
oscillation period is 

= 20(1/3.0) X 1.30 X 12 in. = 105 in. 

The above theoretical value is only 

105 in./92 in. = +14y0 (60) 

larger than the experimentally observed value showing the close agreement 
between theory and experiment. 

Figures 27 and 28 show, however, that in experiments draw resonance 
builds up gradually in the neighborhood of l / X w  rather than abruptly a t  
l/b. This difference is estimated to  be due to (i) the non-Newtonian 
properties of polymer neglected in formulating eqs. (1) through (3), and to 
(ii) the loss of nonlinearity in taking the perturbations. 
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Conclusions 

1. For the case of isothermal spinning, an analytical solution was ob- 
tained to  the perturbed form of the partial differential equations of melt 
spinning developed by the author previously. 

2. Isothermal spinning was found to  be unstable when the draw-down 
ratio was more than 20. 

3. Oscillation period of draw resonance in isothermal spinning was ex- 
pressed as a function of draw-down ratio and air gap. 
4. The stability limits for nonisothermal spinning were expressed in the 

form of diagrams in the (t* - St) plane. 
5 .  In  nonisothermal spinning, cooling of the thread in the air gap plays a 

predominant role in stabilizing the spinning. Notably, the thread must 
be in a molten state a t  the take-up before instability can develop. 

6. Instability develops when the spinning comes close to the state of 
isothermal spinning provided the draw-down ratio is more than 20. 

7. The above theories agreed well with experiments on water-quenched 
melt spinning of PET and on the extrusion of PP ribbons in terms of os- 
cillation periods and stability limits. 

8. The analytical solution for isothermal spinning predicted closely the 
oscillation periods of draw resonance encountered in the casting of PP film. 

In  summary, mathematical models based on eqs. (1) through (3) provide 
adequate understanding of the causes of draw resonance in melt spinning. 

The author wishes to express his sincere thanks to Dr. T. Matsuo, Mr. Y. Yoshimoto 
and Mr. H. Yasuda, all of Toyobo Co. Ltd., for their cooperation in this study. 
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